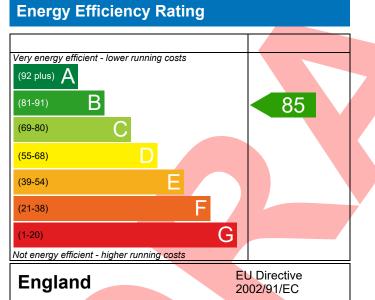
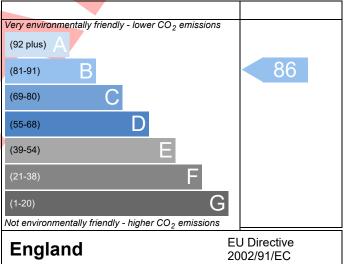
PREDICTED ENERGY ASSESSMENT



DAI, Plot 31, Sweet Hill, Southwell, Portland, Dorset, DT5 Dwelling type: Date of assessment: Produced by: Total floor area:

House, Detached 09/03/2023 Resi Resolve 96.78 m²


This document is a Predicted Energy Assessment for properties marketed when they are incomplete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, this rating will be updated and an official Energy Performance Certificate will be created for the property. This will include more detailed information about the energy performance of the completed property.

The energy performance has been assessed using the Government approved SAP2012 methodology and is rated in terms of the energy use per square meter of floor area; the energy efficiency is based on fuel costs and the environmental impact is based on carbon dioxide (CO_2) emissions.

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

Environmental Impact (CO₂) Rating

The environmental impact rating is a measure of a home's impact on the environment in terms of carbon dioxide (CO_2) emissions. The higher the rating the less impact it has on the environment.

This report has not been submitted through the Elmhurst Energy members' portal, therefore results are subject to change when the dwelling is completed.

BUILDING REGULATION COMPLIANCE Calculation Type: New Build (As Designed)

Design SAP elmhurst energy

roperty DAI, Plot 31, Sweet Hill, Sout AP Rating	85 B 86 B 1.31 Pass esolve, Tel:	DER % DER <ter DFEE % DFEE<tfee 07748778047, geo</tfee </ter 	16.48 44.50 orgie@resi-	TER 37.31 TFEE 18.06 Assessor ID	26.29 54.31 T293-0001	
Invironmental D2 Emissions (t/year) Internal Requirements Compliance Internal Requirements Complicition<	86 B 1.31 Pass esolve, Tel: ned) Electricit	% DER <ter DFEE % DFEE<tfee 07748778047, geo</tfee </ter 	44.50	37.31 TFEE 18.06	54.31	
D₂ Emissions (t/year) eneral Requirements Compliance ssessor Details Mrs. Georgina O'Connor, Resi Regesolve.co.uk ient Koori Limited, KOO MARY FOR INPUT DATA FOR New Build (As Designaterion 1 – Achieving the TER and TFEE rate TER and DER Fuel for main heating Fuel for carbon Dioxide Emission Rate (TER)	1.31 Pass esolve, Tel: ned)	DFEE % DFEE <tfee 07748778047, get</tfee 		TFEE 18.06		
eneral Requirements Compliance ssessor Details Mrs. Georgina O'Connor, Resi Regesolve.co.uk ient Koori Limited, KOO MARY FOR INPUT DATA FOR New Build (As Designiterion 1 – Achieving the TER and TFEE rate TER and DER Fuel for main heating Fuel for carbon Dioxide Emission Rate (TER)	Pass esolve, Tel: ned) Electricit	% DFEE <tfee 07748778047, geo</tfee 		18.06		
ssessor Details Mrs. Georgina O'Connor, Resi Recessor Details ient Koori Limited, KOO MARY FOR INPUT DATA FOR New Build (As Design terion 1 – Achieving the TER and TFEE rate TER and DER Fuel for main heating Fuel for carbon Dioxide Emission Rate (TER)	esolve, Tel: ned)	07748778047, geo	orgie@resi-		T293-0001	
resolve.co.ukientKoori Limited, KOOMARY FOR INPUT DATA FOR New Build (As Design iterion 1 – Achieving the TER and TFEE rateTER and DERFuel for main heating Fuel factor Target Carbon Dioxide Emission Rate (TER)	ned) Electricit	y	orgie@resi-	Assessor ID	T293-0001	
MARY FOR INPUT DATA FOR New Build (As Design iterion 1 – Achieving the TER and TFEE rate <u>TER and DER</u> Fuel for main heating Fuel factor Target Carbon Dioxide Emission Rate (TER)	Electricit					
terion 1 – Achieving the TER and TFEE rate TER and DER Fuel for main heating Fuel factor Target Carbon Dioxide Emission Rate (TER)	Electricit					
TER and DER Fuel for main heating Fuel factor Target Carbon Dioxide Emission Rate (TER)						
Fuel for main heating Fuel factor Target Carbon Dioxide Emission Rate (TER)						
Fuel factor Target Carbon Dioxide Emission Rate (TER)						
Target Carbon Dioxide Emission Rate (TER)	1.55 (ele					
-		ctricity)			7	
	26.29			kgCO ₂ /m ²		
Dwelling Carbon Dioxide Emission Rate (DER)	16.48			kgCO₂/m²	Pass	
	-9.81 (-3	7.3%)		kgCO ₂ /m ²		
TFEE and DFEE						
Target Fabric Energy Efficiency (TFEE)	54.31			kWh/m²/yr		
Dwelling Fabric Energy Efficiency (DFEE)	44.50			kWh/m²/yr		
	-9.8 (-18	.0%)		kWh/m²/yr	Pass	
iterion 2 – Limits on design flexibility						
Limiting Fabric Standards						
2 Fabric U-values						
Element Average	e	Hi	ighest			
External wall 0.21 (ma	ax. 0.30)	0.	21 (max. 0.70)		Pass	
Party wall 0.00 (ma	ax. 0.20)	-			Pass	
Floor 0.11 (ma	ax. 0.25)	0.	0.11 (max. 0.70)			
Roof 0.10 (ma	ax. 0.20)	0.	0.10 (max. 0.35)			
Openings 1.27 (ma	ax. 2.00)	1.	1.30 (max. 3.30)			
2a Thermal bridging						
Thermal bridging calculated from linear therma	al transmitt	ances for each jur	nction			
3 Air permeability		2				
Air permeability at 50 pascals	4.50 (design value)			m³/(h.m²) @ 50 Pa		
Maximum	10.0			m ³ /(h.m ²) @ 50 Pa Pass		
	10.0			, (, @ 501a	1 4 3 3	

This report has not been submitted through the Elmhurst Energy members' portal, therefore results are subject to change when the dwelling is completed.

BUILDING REGULATION COMPLIANCE Calculation Type: New Build (As Designed)

Main heating system	Heat pump with radiators or underfloor - Electric Vaillant aroTHERM 5kW VWL 55/3 A 230v	
Secondary heating system	None	
5 Cylinder insulation		
Hot water storage	Measured cylinder loss: 1.42 kWh/day	Pass
	Permitted by DBSCG 2.30	
Primary pipework insulated	Yes	Pass
<u>6 Controls</u>		
Space heating controls	Time and temperature zone control	Pass
Hot water controls	Cylinderstat	Pass
	Independent timer for DHW	Pass
7 Low energy lights		
Percentage of fixed lights with low-energy fittings	100 %	
Minimum	75 %	Pass
8 Mechanical ventilation		
Not applicable		
Criterion 3 – Limiting the effects of heat gains in sum	nmer	
9 Summertime temperature		
Overheating risk (Southern England)	Not significant	Pass
Based on:		
Overshading	Average	
Windows facing North East	2.21 m ² , No overhang	
Windows facing South West	9.02 m ² , No overhang	
Air change rate	8.00 ach	
Blinds/curtains	None	
Criterion 4 – Building performance consistent with D	DER and DFEE rate	
Party Walls		
Туре	U-value	
	W/m²K	Pass
Air permeability and pressure testing		
<u>3 Air permeability</u>		
Air permeability at 50 pascals	4.50 (design value) m ³ /(h.m ²) @ 50 Pa	
Maximum	10.0 m³/(h.m²) @ 50 Pa	Pass
<u>10 Key features</u>		
Party wall U-value	0.00 W/m ² K	
Roof U-value	0.10 W/m ² K	
Floor U-value	0.11 W/m ² K	
Door U-value	1.10 W/m ² K	
Door U-value	1.00 W/m ² K	
Thermal bridging y-value	0.029 W/m²K	

This report has not been submitted through the Elmhurst Energy members' portal, therefore results are subject to change when the dwelling is completed.

RECOMMENDATIONS

	Typical cost	Typical savings per year	Energy efficiency	Environmental impact	Result
Low energy lights			0	0	Already installed
Solar water heating	£4,000 - £6,000	£203	B 88	B 89	Recommended
Photovoltaic	£3,500 - £5,500	£779	A 97	A 97	Recommended
Wind turbine	, ,		0	0	Not applicable
Totala		CO83			
Totals	£7,500 - £11,500	£983	A 97	A 97	

This report has not been submitted through the Elmhurst Energy members' portal, therefore results are subject to change when the dwelling is completed.

